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1. What are these notes about?

These are notes for a graduate summer course on the Lefschetz Properties to be held
in Krakow, May 6–10, 2024. They are based to a large extent on the monograph [11]
by T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi and J. Watanabe. This
reference contains all the material contained in these notes except for Section 7, which
describes more recent developments based on [14]. The treatment of earlier chapters,
while deeply influenced by [11], reflects the author’s mathematical taste.

The topic of these lectures is the algebraic Lefschetz properties, which are abstrac-
tions of the important Hard Lefschetz Theorem from geometry. Section 2 explains the
topological context of this result. Section 4 introduces the algebraic Lefschetz proper-
ties and their relevance to commutative algebra. Section 5 establishes a correspondence
between the strong Lefschetz property and an action of the Lie group sl2. Section 6
focuses on the class of Gorenstein rings and their construction via Macaulay’s inverse
system. Section 5.3 and Section 7 investigate how various constructions of new rings
from old interact with the Lefschetz properties.

Acknowledgements. Lisa Nicklasson has saved these notes from an embarrassing
number of typos, for which I am deeply grateful. She also contributed some of the
exercises and references. Thanks are also due to Kara Fagerstrom and Ana Podariu
for reading a preliminary version of these notes and pointing out flaws.

Date: May 1, 2024.
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2. Cohomology rings and the Hard Lefschetz Theorem

I will give an introduction to the origins of the algebraic Lefschetz properties. The
motivation for this topic comes from algebraic topology, so we will spend a bit of time
talking about how the Lefschetz property arises there.

2.1. Cohomology rings. Let F be a vector space and let X be a topological space
(such as projective space Pn or the n-dimensional sphere Sn). Let’s recall the notion
of cohomology of X with coefficients in F.

First, one can think of X as being made out of simple cells (or at least one can
approximate X in this manner). This endows X with a cell complex (CW-complex)
structure.

Example 2.1 (CW structures on sphere). The 2-dimensional sphere S2 can be ob-
tained from taking a point (0-dimensional cell) and glueing a 2-dimensional disc onto
it along its entire boundary. So the CW-structure of S2 is

S2 = pt + 2-dimensional disc

More generally one can do the same for the n-dimensional sphere Sn:

Sn = pt + n-dimensional disc.

There is another, less economical way to give the sphere a CW-structure. For S2 one
takes two 0-dimensional cells, connects them using two line segments (1-dimensional
cells) to form a circle S1. Then one can glue two 2-dimensional discs via their bound-
aries to the circle to form S2. Similarly, there is a CW-structure on Sn with two cells
in each dimension summarized by

Sn = 2×pt+2×1-dimensional disc+2×2-dimensional disc+· · ·+2×n-dimensional disc.

Example 2.2 (CW structure on the real projective space). Consider first PnR. It can be
written as Sn/{±1}. If we take a CW structure on Sn with two cells in each dimension,
with the action of −1 swaps the cells, thus they become identified in the quotient and
so PnR has a CW structure with one cell in each dimension.

PnR = pt + 1-dimensional cell + · · ·+ n-dimensional cell.

Next consider PnC. This has a cell in every even (real) dimension:

PnC = pt + 2-dimensional cell + · · ·+ 2n-dimensional cell.

Proceeding towards homology, we define a chain complex C•(X) by letting Cn(X)
be the F-vector space generated by the n-dimensional cells of X. There are so-called
boundary maps1, which fit into the following sequence

C•(X) : 0← F#0-cells ← F#1-cells ← · · · ← F# dim(X)-cells ← 0.

There is also a dual version called the cochain complex of X with coefficients in R

C•(X) = Hom(C•(X),F) : 0→ F#0-cells ∂1→ F#1-cells ∂2→ · · · ∂n→ F# dim(X)-cells → 0.

1We will not describe the boundary maps here.
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Definition 2.3. The cohomology groups of X are defined as

H i(X,F) = H i (C•(X)) = Ker ∂i/ Im ∂i−1.

Example 2.4. Based on Example 2.1 we have

C•(Sn) : 0→ F→ 0→ 0→ . . .→ F→ 0

H i(Sn,F) =

{
F i = 0, n

0 otherwise

C•(PnC) : 0→ F→ 0→ F→ 0→ F→ . . .→ F→ 0

H i(PnC, R) =

{
F i = even

0 i = odd

The special property of these cohomology groups that allows us to study them using
tools from ring theory is that they can be assembled into a graded ring.

Definition 2.5. The cohomology ring of X is

H•(X,F) =
⊕
i≥0

H i(X,F).

To study multiplication on this ring we need to define a map called the cup product

Hm(X,F)×Hn(X,F)→ Hm+n(X,F).

For this recall the Künneth isomorphism: for two topological spaces X and Y if one of
X or Y has torsion-free homology (true since F is a field) and has finitely many cells
in each dimensions, there is an isomorphism k : H•(X×Y,F) ∼= H•(X,F)⊗FH

•(Y,F).
The composite with the diagonal map

H•(X,F)⊗F H
•(X,F)

∼=→ H•(X ×X,F)
∆∗→ H•(X,F)

defines the cup product by x ∪ y = ∆∗k(x⊗ y). The cup product is not commutative,
but it is what we call graded commutative: if x ∈ Hm(X,F) and |x| = m denotes the
degree of x, then

x ∪ y = (−1)|x||y|y ∪ x. (2.1)

Note that in a graded commutative ring even degree elements commute with all other
elements, while odd degree elements anti-commute with other odd degree elements.

Example 2.6 (Homology ring of a sphere). From Example 2.4 we have

H•(Sn,F) = F⊕ F.

Set 1 and e to be the generators of H0(Sn,F) and Hn(Sn,F) as F-vector speces, re-
spectively. Then 1 is the multiplicative identity of the ring H•(Sn,F) and e2 = e∪ e ∈
H2n(Sn,F) = 0, so

H•(Sn,F) = F[e]/(e2) with |e| = n.
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Example 2.7 (Homology ring of a torus). Applying the Künneth formula to the torus
T n = S1 × · · · × S1 gives for elements e1, . . . , en with |ei| = 1

H•(T n,F) = F[e1]/(e2
1)⊗F F[e2]/(e2

2)⊗F F[en]/(e2
n) =

∧
F

〈e1, . . . , en〉.

Note that the tensor product above is taken in the category of graded-commutative
algebras which implies that eiej = −ejei. If the characteristic of F is not equal to 2
then this implies e2

i = 0 for all i. The ring above, denoted
∧

F〈e1, . . . , en〉, is called an
exterior algebra. As an F-vector space, a basis of the exterior algebra is given by all
the square-free monomials in the variables e1, . . . , en.

Example 2.8 (Homology ring of projective plane). From Example 2.4 we haveH•(PnC,F) =
F⊕ F⊕ · · · ⊕ F, with n summands in degrees 0, 2, . . . , 2n. Set x to be the generator of
H2(PnC,F). It turns out similarly to the above example that

H•(PnC,F) = F[x]/(xn+1), with |x| = 2.

We can apply the Künneth formula to compute

H•(Pd1C × Pd2C × · · · × PdnC ,F) ∼= F[x1]/(xd1+1)⊗F F[x2]/(xd2+1)⊗F · · · ⊗F F[xn]/(xdn+1)

∼= F[x1, . . . , xn]/(xd1+1
1 , . . . , xdn+1

n ), with |xi| = 2.

2.2. The Hard Lefschetz Theorem. We now come to the main result that we have
been building up to. Let X be an algebraic subvariaty of P n

C and let H denote a
(general) hyperplane in P n

C . Then X ∩H is a subvariety of X of real codimension two,
and thus by a, standard construction in algebraic geometry represents a cohomology
class L ∈ H2(X,R) called the class of a a hyperplane section.

Theorem 2.9 (Hard Lefschetz Theorem). Let X be a smooth irreducible complex pro-
jective variety of complex dimension n (real dimension 2n), H•(X) = H•(X,R), and
let L ∈ H2(X,R) be the class of a a hyperplane section. Then for 0 ≤ i ≤ n the
following maps are isomorphisms

Li : Hn−i(X)→ Hn+i(X), where Li(x) = L ∪ · · · ∪ L︸ ︷︷ ︸
Li

∪x.

Remark 2.10. The Hard Lefschetz theorem works for H•(X,F) where F is any field of
characteristic zero, but the conclusion of the theorem is false in positive characteristic.

The theorem above was first stated by Lefschetz in [15], but his proof was not entirely
rigorous. Speaking about his work Lefschetz states:

“The harpoon of algebraic topology was planted in the body of the whale
of algebraic geometry.”

The first complete proof of Theorem 2.9 was given by Hodge [12]. The “standard” proof
today uses the representation theory of the Lie algebra sl2(C) and is due to Chern [3].
Lefschetz’s original proof was only recently made rigorous by Deligne[5], who extended
it to positive characteristic.
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Example 2.11 (The Hard Lefschetz theorem in action). For H•(P n
C ) = F[x]/(xn+1)

the class of a hyperplane is L = x (recall that |x| = 2) and it gives whenever i ≡ n
(mod 2) isomorphisms

Hn−i(P n
C ) = x

n−i
2 F ×xi−−→ Hn+i(P n

C ) = x
n+i
2 F

x
n−i
2 y 7→ xi(x

n−i
2 y) = x

n+i
2 y.

Cohomology rings of n-dimensional complex projective varieties X with coefficients
in a field F satisfy the following properties:

(1) H•(X,F) is a graded commutative ring in the sense of (2.1). Its even part
A := H2•(X,F) =

⊕
i≥0H

2i(X,F) is a commutative graded ring as defined in

the next chapter. We can re-grade this ring by setting |x| = i if x ∈ H2i(X,F).
With this convention |L| = 1.

(2) H•(X,F) and A are finite dimensional F-vector spaces (so A is an artinian ring
cf. Definition 3.8)

(3) H•(X,F) andA satisfiy Poincaré duality (henceA is a Gorenstein ring cf. Propo-
sition 3.12).

The main objective of this course is to extend the Hard Lefschetz theorem (and
some weaker versions) to arbitrary rings which may not necessarily be cohomology
rings, but still satisfy at least some of the properties above. Thus we are motivated by
the following

Question 2.12. Which commutative graded rings A that are artinian or both
artinian and Gorenstein also satisfy the conclusion of the Hard Lefschetz theo-
rem?

3. Classes of graded rings

From now on all rings will be commutative unless specified otherwise.

3.1. Artinian algebras.

Definition 3.1 (Graded ring). A commutative ring A is an (N–)graded ring provided
it decomposes as

A =
⊕
i≥0

Ai

with Ai abelian groups such that ∀i, j ∈ N AiAj ⊆ Ai+j (a ∈ Ai, b ∈ Aj ⇒ ab ∈ Ai+j).

From now on we restrict to graded rings A with A0 = F a field. I will refer to these
as F-algebras. Note that in particular such A and each of its homogeneous components
Ai is an F vector space.

Example 3.2. A = F[x1, . . . , xn] is the fundamental example of a graded ring with
Ai = the set of homogeneous polynomials of degree i. Note that the degree of xi is
allowed to be an arbitrary positive integers.
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Exercise 3.3. Show that if A is a commutative, Noetherian graded F-algebra, then
dimFAi is finite for each i.

Definition 3.4 (Hilbert function). The Hilbert function of a Noetherian graded F-
algebra A is the function

hA : N→ N, hA(i) = dimFAi.

The Hilbert series of A is the power series HA(t) =
∑

i≥0 hA(i)ti.

Exercise 3.5. Prove that the Hilbert function of the polynomial ring R = F[x1, . . . , xn]
is given by

hR(i) =

(
n+ i− 1

i

)
, ∀i ≥ 0

and the Hilbert series is

HR(t) =
1

(1− t)n
.

Example 3.6. The Hilbert function of the truncated polynomial ring A = F[x1,...,xn]
(x1,...,xn)d

is

given by

hA(i) =

{(
n+i−1

i

)
if 0 ≤ i < d

0 if i ≥ d.

Thus HA(t) =
∑d−1

i=0

(
n+i−1

i

)
ti.

Example 3.7. Consider F a field and let A = F[x, y, z]/(x2, y2, z2). Clearly, A is a finite
dimensional F-vector space with basis given by the monomials {1, x, y, z, xy, yz, xz, xyz}.
We see that the elements of A have only four possible degrees 0,1,2,3 and moreover

A0 = SpanF{1} ∼= F⇒ hA(0) = 1

A1 = SpanF{x, y, z} ∼= F3 ⇒ hA(1) = 3

A2 = SpanF{xy, yz, xz} ∼= F3 ⇒ hA(2) = 3

A3 = SpanF{xyz} ∼= F⇒ hA(3) = 1

Ai = 0,∀i ≥ 4⇒ hA(i) = 0, ∀i ≥ 4

Thus HA(t) = 1 + 3t+ 3t2 + t3.

In Example 3.6 and Example 3.7 the Hilbert series was in fact a polynomial, equiv-
alently the Hilbert function was eventually equal to zero. We now define a class of
graded rings which satisfy this property.

Definition 3.8 (Artinian ring). A (local or) graded F-algebra (A,m,F = A/m) is
artinian if any of the following equivalent conditions holds.

(a) A is finite dimensional as a F-vector space.
(b) A has Krull dimension zero.
(c) If m is the (homogeneous) maximal ideal of A, then mp = 0 for some (hence

all sufficiently large) p ≥ 1. If A is graded this can be restated as Ad = 0 for
sufficiently large d.

(d) A satisfies the descending chain condition for ideals.
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(e) There exists a descending sequence of ideals

A = a0 ⊇ a1 ⊇ a2 ⊇ · · · ⊇ a` = 0 such that ai−1/ai ∼= F.

Such a sequence of ideals is called a composition series.
Moreover, if R = F[x1, . . . , xn] is a polynomial ring and A = R/I for some

homogeneous ideal I of R then the conditions above are also equivalent to.
(f) For each 0 ≤ i ≤ n there is some integer pi such that xpii ∈ I.
(g) If F is algebraically closed, another equivalent condition is V(I) = ∅.

3.2. Artinian Gorenstein rings and complete intersections.

Definition 3.9 (Socle). For a graded artinian F algebra the maximal integer d such
that Ad 6= 0 is called the maximal socle degree of A. The socle of A is the ideal

(0 :A m) = {x ∈ A | xy = 0,∀y ∈ m}
and one can see that there is always a containment Ad ⊆ (0 :A m), where d denotes
the maximal socle degree of A.

Exercise 3.10. Prove the containment Ad ⊆ (0 :A m) claimed above.

Definition 3.11 (Artinian Gorenstein ring). A graded F-algebra is artinian Gorenstein
(AG) if its socle is a one dimensional F-vector space.

An equivalent characterization of AG algebras is given by the following proposition.

Proposition 3.12 (Poincaré duality). A graded F-algebra A of maximal socle degree d
is AG if and only if for each nonzero element asoc of Ad there exists an F-vector space
homomorphism

∫
A

: A→ F called an orientation, satisfying the following properties:

(1)
∫
A
asoc = 1, that is, the orientation induces an isomorphism Ad ∼= F,

(2) for each element a ∈ Ai there exists a unique element b ∈ Ac−i so that
∫
A
ab = 1.

In Section 7.2 we will use the notation asoc implicitly to mean fixing the unique
orientation on A that satisfies

∫
A
asoc = 1.

Example 3.13. Continuing with Example 3.7, the socle is (0 :A m) = Span{xyz},
a 1-dimensional F-vector space. This shows that A is Gorenstein. Take the ori-
entation on A to be specified by

∫
A
xyz = 1. We see that the F-basis elements

{1, x, y, z, xy, yz, xz, xyz} of A form pairs with respect to the given orientation in the
following manner ∫

A

1 · xyz = 1∫
A

x · yz = 1∫
A

y · xz = 1∫
A

z · xy = 1.



8 ALEXANDRA SECELEANU

Example 3.14. Another example of an artinian Gorenstein ring is

R =
F[x, y, z]

(xy, xz, yz, x2 − y2, x2 − z2)
.

Exercise 3.15. Prove that if A is a graded AG algebra of maximum socle degree d
then hA(i) = hA(d− i) for each 0 ≤ i ≤ d. This is usually stated by saying AG algebras
have symmetric Hilbert function.

Definition 3.16. A graded artinian F-algebra is a complete intersection (CI) if A =
R/I where R = F[x1, . . . , xn] and I = (f1, . . . , fn), that is, I is a homogeneous ideal
generated by as many elements as there are variables in R.

Example 3.17. The rings A = F[x1, . . . , xn]/(xd11 , . . . , x
dn
n ), where d1, . . . , dn ≥ 1 are

integers, are called monomial complete intersections.

Exercise 3.18. Prove that the rings in Example 3.17 are the only artinian Gorenstein
rings of the formR/I whereR = F[x1, . . . , xn] and I is an ideal generated by monomials.

All CI rings are Gorenstein, but not all Gorenstein rings are CI, as exemplified by
the ring in Exercise 6.22.

4. The Lefschetz properties

4.1. Weak Lefschetz property and consequences.

Definition 4.1 (Weak Lefschetz property). Let A =
⊕c

i=0Ai be a graded artinian
F-algebra. We say that A has the weak Lefschetz property (WLP) if there exists
an element L ∈ A1 such that for 0 ≤ i ≤ c− 1 each of the multiplication maps

×L : Ai → Ai+1, x 7→ Lxis either injective or surjective.

We call L with this property a weak Lefschetz element.

Definition 4.2. The non-weak Lefschetz locus of a graded artinian F-algebra A
is the set (more accurately the algebraic set)

NLLw(A) = {(a1, . . . , an) ∈ Fn | L = a1x1+· · ·+anxn not a weak Lefschetz element on A}.

The WLP says that ×L has the maximum possible rank, which is referred to as full
rank.

Exercise 4.3 (Equivalent WLP statements). Prove that for an artinian graded F-
algebra A the following are equivalent:

(1) L ∈ A1 is a weak Lefschetz element for A.
(2) For all 0 ≤ i ≤ c− 1 the map ×L : Ai → Ai+1 has rank min{hA(i), hA(i+ 1)}.
(3) For all 0 ≤ i ≤ c− 1 dimF([(L)]i+1) = min{hA(i), hA(i+ 1)}.
(4) For all 0 ≤ i ≤ c− 1 dimF([A/(L)]i+1) = max{0, hA(i+ 1)− hA(i)}.
(5) For all 0 ≤ i ≤ c− 1 dimF([0 :A L]i) = max{0, hA(i)− hA(i+ 1)}.

Exercise 4.4. Show that the non-weak Lefschetz locus is a Zariski closed set.
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Example 4.5. Take A = C[x, y]/(x2, y2) with the standard grading |x| = |y| = 1 and
L = x+ y. Then the multiplication map ×L gives the following matrices with respect
to the monomial bases {1}, {x, y} and {xy}:

map matrix rank inj/ surj

A0 → A1

[
1
1

]
1 inj

A1 → A2

[
1 1

]
1 surj

Ai → Ai+1, i ≥ 2
[
0
]

0 surj

We conclude that A has the WLP and x+ y is a Lefschetz element on A.

Example 4.6 (Dependence on characteristic). Take A = F[x, y, z]/(x2, y2, z2) with the
standard grading |x| = |y| = 1 and L = ax+ by+ cz. Then the multiplication map ×L
is represented by the following matrices with respect to the monomial bases 1 for A0,
{x, y, z} for A1, {xy, xz, yz} for A2, and xyz for A3:

×L : A0 → A1 M =

ab
c

 , injective unless a = b = c = 0

×L : A1 → A2 M =

b a 0
c 0 a
0 c b

 , det(M) = −2abc

×L : A2 → A3 M =
[
a b c

]
, surjective unless a = b = c = 0.

The map ×L : A1 → A2 has full rank iff char(F) 6= 2 and a 6= 0, b 6= 0, c 6= 0. We
conclude that A has the WLP iff char(F) 6= 2 because in that case e.g. L = x+ y + z
is a weak Lefschetz element.

The non-(weak) Lefschetz locus of A in this example is

NLLw(A) = {(a, b, c) ∈ F3 | L = ax+ by + cz is not a weak Lefschetz element on A}
= V (abc) = {(a, b, c) ∈ F3 | a = 0 or b = 0 or c = 0}
= the union of the three coordinate planes in F3.

Definition 4.7. A sequence of numbers h1, . . . , hc is called unimodal if there is an
integer j such that

h1 ≤ h2 ≤ · · · ≤ hj ≥ hj+1 ≥ · · · ≥ hc.

Lemma 4.8. If B is a standard graded F-algebra and Bj = 0 for some j ∈ N then
Bi = 0 for all i ≥ j.

Proof. B standard graded means that B = F[B1] = F[x1, . . . , xn]/I where x1, . . . , xn
are an F-basis for B1 so |x1| = · · · = |xn| = 1 and I is a homogeneous ideal.

Then we see that Bi = SpanF{Bi−jBj} = SpanF{0} = 0 for any i ≥ j. �

Proposition 4.9. Suppose that A is a standard graded artinian algebra over a field F.
If A has the weak Lefschetz property then A has a unimodal Hilbert function.
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Proof. Let j be the smallest integer such that dimFAj > dimFAj+1 and let L be a
Lefschetz element on A. Then ×L : Aj → Aj+1 is surjective i.e. LAj = Aj+1. Now
consider the cokernel A/(L) of the map

A
×L−→ A.

We have that (A/(L))j+1 = Aj+1/LAj = 0, so by the previous Lemma (A/(L))i+i =

Ai−j (A/(L))j+1 = 0 for i ≥ j. This means that ×L : Ai → Ai+1 is surjective for i ≥ j
and so we have

h0(A) ≤ h1(A) ≤ · · · ≤ hj(A) ≥ hj+1(A) ≥ hj+2(A) ≥ · · · ≥ hc(A).

�

The proof above yields:

Corollary 4.10. For a standard graded artinian algebra A there exists j ∈ N such that
the multiplications maps by a weak Lefschetz element ×L : Ai → Ai+1 are injective for
i < j after which they become surjective for i ≥ j.

Example 4.11 (Dependence on grading). Recall from Example 2.18 that the algebra
A = F[x, y]/(x2, y2) with |x| = |y| = 1 is standard graded and has WLP and notice
that the Hilbert function of A, 1, 2, 1 is unimodal.

Take B = C[x, y]/(x2, y2) with |x| = 1, |y| = 3. Then B is a graded algebra with
nonunimodal Hilbert function 1, 1, 0, 1, 1, but x is a weak Lefschetz element on B.

Take C = C[x, y]/(x2, y2) with |x| = 1, |y| = 2. Then C has a unimodal Hilbert
function 1, 1, 1, 1 but does not have the WLP.

4.2. Strong Lefschetz property and consequences.

Definition 4.12 (Strong Lefschetz property). Let A =
⊕c

i=1Ai be a graded artinian
F-algebra. We say that A has the strong Lefschetz property (SLP) if there exists
an element L ∈ A1 such that for all 1 ≤ d ≤ c and 0 ≤ i ≤ c − d each of the
multiplication maps

×Ld : Ai → Ai+d, x 7→ Ldx is either injective or surjective.

. We call L with this property a strong Lefschetz element.

Remark 4.13. An element L ∈ A1 is strong Lefschetz on A if and only if for all 1 ≤ d ≤ c
and 0 ≤ i ≤ c− d the maps ×Ld : Ai → Ai+d have rank min{hA(i), hA(d+ i)}.

Definition 4.14. The non-strong Lefschetz locus of a graded artinian F-algebra
A is the set (more accurately the algebraic set)

NLLs(A) = {(a1, . . . , an) ∈ Fn | L = a1x1+· · ·+anxn not a strong Lefschetz element on A}.

Remark 4.15. The non-strong Lefschetz locus is a Zariski closed set.

Remark 4.16 (SLP⇒WLP). If A satisfies SLP then A satisfies WLP (the d = 1 case).

The following exercise shows this implication is not reversible.
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Exercise 4.17. Let F be a field of characteristic zero and let

A =
F[x, y, z]

(x3, y3, z3, (x+ y + z)3)
.

(1) Find the Hilbert function of A.
(2) Prove that A satisfies WLP but not SLP .

Example 4.18 (Dependence on characteristic). Take A = F[x, y]/(x2, y2) with the
standard grading |x| = |y| = 1 and L = ax + by. Then the multiplication map ×L2

gives the following matrices with respect to the monomial bases {1}, {x, y} and {xy}:
map matrix rank inj/ surj

A0 → A2

[
2ab
] {

1 char(F) 6= 2

0 char(F) = 2

{
bij char(F) 6= 2

none char(F) = 2

Ai → Ai+2, i ≥ 1
[
0
]

0 surj

If char(F) 6= 2 we conclude that A has the SLP and ax + by where a 6= 0, b 6= 0 is a
Lefschetz element on A. The non-(strong) Lefschetz locus is the union of the coordinate
axes in F2

NLLs(A) = V (ab) = {(a, b) ∈ F2 | a = 0 or b = 0}.
However A does not have the SLP if char(F) = 2 so in that case NLLs(A) = F2.

Proposition 4.19. Let A be a (not necessarily standard) graded artinian F-algebra
which satisfies the SLP. Then A has unimodal Hilbert function.

Proof. Suppose that the Hilbert function of A is not unimodal. Then there are integers
k < l < m such that dimFAk > dimF Al < dimFAm. Hence the multiplication map
×Lm−k : Ak → Am cannot have full rank for any linear element L ∈ A because it is
the composition of ×Lm−l : Al → Am and ×Ll−k : Al → Ak, each of which have rank
strictly less than min{dimFAk, dimFAm}. Thus A cannot have the SLP. �

Definition 4.20. . Let A =
⊕c

i=1 Ai be a graded artinian F-algebra. We say that A
has the strong Lefschetz property in the narrow sense (SLPn) if there exists
an element L ∈ A1 such that the multiplication maps ×Lc−2i : Ai → Ac−i, x 7→ Lc−2ix
are bijections for all 0 ≤ i ≤ dc/2e.
Remark 4.21. SLP in the narrow sense is the closest property to the conclusion of the
Hard Lefschez Theorem 2.9.

Definition 4.22. We say that a graded artinian algebra A =
⊕c

i=1 Ai of maximum
socle degree c has a symmetric Hilbert function if hA(i) = hA(c− i) for 0 ≤ i ≤ dc/2e.
Proposition 4.23. If a graded artinian F-algebra A has the strong Lefschetz prop-
erty in the narrow sense, then the Hilbert function of A is unimodal and symmetric.
Moreover we have the equivalence:

A has SLP + symmetric Hilbert function ⇔ A has SLP in the narrow sense.

Proof. (⇐) The fact that SLP in the narrow sense implies symmetric Hilbert function
follows from the definition because the bijections give dimF Ai = dimF Ac−i.

The fact that SLP in the narrow sense implies SLP can be noticed by considering
×Ld : Ai → Ai+d. For each such d, i there exists j = c− i− d such that:
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• if i ≥ (c − d)/2 then j = c − i − d ≤ i and (×Ld) ◦ (×Lj−i) = ×Lc−2i is a
bijection implies that ×Ld is surjective, hence has full rank;
• if i < (c− d)/2 then c− i > d+ i and (×Lj−i) ◦ (×Ld) = ×Lc−2i is a bijection

implies that ×Ld is injective, hence full rank;

(⇒) The fact that SLP + symmetric Hilbert function implies SLPn is clear from the
definitions. �

Example 4.24. The standard graded algebra F[x, y]/(x2, xy, ya) with a > 3 has non-
symmetric Hilbert function 1, 2, 1, . . . , 1︸ ︷︷ ︸

a−2

. Notice that A has the SLP because L = x+y

is a strong Lefschetz element, A does not satisfy SLPn because its Hilbert function is
not symmetric.

4.3. Stanley’s Theorem. The most famous theorem in the area of investigation of
the algebraic Lefschetz properties, and also the theorem which started this, is the
following:

Theorem 4.25 (Stanley’s theorem). If char(F) = 0, then all monomial complete in-
tersections, i.e. F-algebras of the form

A =
F[x1, . . . , xn]

(xd11 , . . . , x
dn
n )

with d1, . . . , dn ∈ N have the SLP.

Proof. Recall that H•(Pd−1
C ,F) = F[x]/(xd), so by Künneth we have

H•(Pd1−1
C ×Pd2−1

C ×· · ·×Pdn−1
C ,F) = F[x]1/(x

d1
1 )⊗FF[x2]/(xd22 )⊗F · · ·⊗FF[xn]/(xdnn ) = A.

Since X = Pd1−1
C ×Pd2−1

C × · · · ×Pdn−1
C is an irreducible complex projective variety, the

Hard Lefschetz theorem says that A has SLP in the narrow sense which implies that
A has SLP. �

We will give another proof of Stanley’s theorem later in these notes.

Exercise 4.26. With help from a computer make conjectures regarding the WLP and
SLP for monomial complete intersections in positive characteristics. A characterization
is known for SLP, but not for WLP. See [4, 20] for related work.

4.4. Combinatorial applications. The following discussion of a spectacular appli-
cation of SLP is taken from [23].

A polytope is a convex body in Euclidean space which is bounded and has finitely
many vertices. Let P be a d-dimensional simplicial convex polytope with fi i-dimensional
faces, 0 < i < d − 1. We call the vector f(P) = (f0, . . . , fd−1) the f -vector of P .The
problem of obtaining information about such vectors goes back to Descartes and Euler.
In 1971 McMullen [18] gave a remarkable condition on a vector (f0, . . . , fd−1) which he
conjectured was equivalent to being the f -vector of some polytope.

To describe this condition, define a new vector h(P) = (h0, ..., hd), called the h-vector
of P , by

hi =
i∑

j=0

(
d− j
d− i

)
(−1)i−jfj−1
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where we set f−1 = 1. McMullen’s conditions, though ho did not realize it, turn out
to be equivalent to hi = hd−i for all i together with the existence of a standard graded
commutative algebra A with A0 = F and hi(A) = hi − hi−1 for 1 ≤ i < bd/2c.

Stanley [22] constructed from P a d-dimensional complex projective toric variety
X(P) for which dimCH

2i(X(P)) = hi. Although X(P) need not be smooth, its
singularities are sufficiently nice that the hard Lefschetz theorem continues to hold.
Namely, X(P) locally looks like Cn/G, where G is a finite group of linear transforma-
tions. Taking A = H∗(X(P))/(L) with degrees scaled by 1/2, where L is the class of a
hyperplane section, the necessity of McMullen’s condition follows from Exercise 4.3(4).
Sufficiency was proved about the same time by Billera and Lee [2].

5. Lefschetz property via representation theory of sl2

5.1. The Lie algebra sl2 and its representations.
Some of the exercises in this section are taken from [21].
Throughout this section let F be an algebraically closed field of characteristic zero.

Definition 5.1. A Lie algebra is a vector space g equipped with a bilinear operator
[−,−] : g× g→ g satisfying the following two conditions :

• [x, y] = −[y, x]
• [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The bilinear operator [−,−] is called the bracket product, or simply the bracket. The
second identity in the definition is called the Jacobi identity.

Remark 5.2. Any associative algebra has a Lie algebra structure with the bracket
product defined by commutator [x, y] = xy − yx. Associativity implies the Jacobi
identity.

The set of n×n matricesMn(F) forms a Lie algebra since it is associative. This Lie
algebra is denoted by gln(F).

Definition 5.3. Since the set of matrices of trace zero is closed under the bracket
(because tr(AB) = tr(BA) for any matrices A,B), it forms a Lie subalgebra

sln(F) = {M ∈ gln(F) | tr(M) = 0}.

Example 5.4 (The Lie algebra sl2(F)). In the case where n = 2, sl2(F) is three-
dimensional, with basis

E =

[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
1 0

]
The three elements E,H, F are called the sl2-triple.

These elements satisfy the following three relations, which we call the fundamental
relations:

[E,F ] = H, [H,E] = 2E, [H,F ] = −2F. (5.1)

The algebra sl2(F) is completely determined by these relations.

We are interested in representations of sl2.
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Definition 5.5 (Lie algebra representation). Let V be an F-vector space. Then
End(V ) is a Lie algebra with the bracket defined by [f, g] = f◦g−g◦f . A representation
of a Lie algebra g is vector space V endowed with a Lie algebra homomorphism

ρ : g→ End(V ),

i.e. a vector space homomorphism which satisfies

ρ([x, y]) = [ρ(x), ρ(y)].

A representation is called irreducible if it contains no trivial (nonzero) subrepresen-
tation i.e. if W ( V is such that ρ(W ) ⊆ W then W = 0.

In the case of g = sl2(F), we abuse notation and call the set of elements ρ(E), ρ(H), ρ(F )
just E,H, F and say they form an sl2-triple.

Exercise 5.6. Let F[x, y]d be the vector space of homogeneous polynomials of degree
d in F[x, y]. Prove that

(1) E = x ∂
∂y
, H = x ∂

∂x
− y ∂

∂y
, F = y ∂

∂x
form an sl2-triple.

(2) Prove that the monomial xayb is an eigenvector of H with eigenvalue a− b ∈ Z.
In particular the eigenvalues ofH on F[x, y]d are d, d−2, d−4, . . . , 4−d, 2−d,−d.

(3) Prove that a basis of F[x, y]d is yd, E(yd), E2(yd), . . . , Ed(yd).

Pictorially this can be summarized as

0 Fyd Fxyd−1 · · · Fxd−1y Fxd 0

E E E E

E

F

F F F F

We will soon see that the vector space in Exercise 5.6 is the basic building block of
all other representations of sl2.

An important result on Lie algebra representations are:

Theorem 5.7 (Weyl’s Theorem). Any Lie algebra representation decomposes uniquely
up to isomorphism as a direct sum of irreducible representations.

Definition 5.8 (Weight vectors). Let ρ : sl2(F) → End(V ) be a representation. The
eigenvalues of H are called weights and the eigenvectors are called weight vectors. In
particular an eigenvector u is called a lowest weight vector if Fu = 0 and is called a
highest weight vector if Eu = 0.

Example 5.9. In the representation introduced in Exercise 5.6 the highest weight
vectors are the elements of Fxd and the lowest weight vectors are the elements of Fyd.

To justify the name of highest weight we state the following theorem:

Theorem 5.10 (Irreducible representations of sl2). Let ρ : sl2(F)→ End(V ) be an ir-
reducible representation with dim(V ) = d+1. Then there exist a basis B = {v0, . . . , vd}
for V such that

(1) each vi is an eigenvector for H with eigenvalue −d+ 2i, i.e. Hvi = (−d+ 2i)vi
(2) Evi = vi+1 for i < d, Evd = 0
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(3) Fvi = i(d− i+ 1)vi−1 for i > 0, Fv0 = 0.

In particular, the elements E,H, F ∈Md+1(F) are represented by the matrices

[E]B =


0 0 · · · 0 0
1 0 · · · 0 0
...

. . . . . .
...

...
0 0 · · · 1 0

 , (5.2)

[H]B =


−d 0 · · · 0
0 −d+ 2 · · · 0
...

. . .
...

0 0 · · · d

 , (5.3)

[F ]B =


0 1 · d · · · 0 0
0 0 2(d− 1) 0 0
...

. . . . . .
...

...
0 0 · · · 0 d · 1
0 0 · · · 0 0

 . (5.4)

Exercise 5.11. Find a basis that satisfies the properties given by Theorem 5.10 for
the representation F[x, y]d introduced in Exercise 5.6.

Theorem 5.10 above says in particular that there is only one representation of sl2 of
dimension d+1 (up to isomorphism). A representative for this isomorphism class can be
chosen to be the representation F[x, y]d in Exercise 5.6. Furthermore any representation
of sl2 has a basis consisting of weight vectors. This justifies the following:

Definition 5.12. Let V be a representation of sl2 and let Wλ(V ) = {v ∈ V | Hv = λv}
be the eigenspace corresponding to a weight (eigenvalue) λ for H. Then there is a
decomposition V =

⊕
λWλ(V ) called the weight space decomposition of V .

Remark 5.13. If V is an irreducible representation for sl2 and dim(V ) = n + 1 then
the weight spaces are the 1-dimensional spaces W−n+2i(V ) = Fvi, with vi as in Theo-
rem 5.10.

Exercise 5.14. (1) Suppose that V is a representation of sl2 and that the eigenval-
ues of H on V are 2, 1, 1, 0,−1,−1,−2. Show that the irreducible decomposition
of V is V ∼= F[x, y]2 ⊕ F[x, y]1 ⊕ F[x, y]1.

(2) Prove that if V is any representation of sl2 then its irreducible decomposition
is determined by the eigenvalues of H.

Exercise 5.15. Let V be an sl2 representation and set Wk = {v ∈ V | H(v) = kv}.
(1) Show that dimFWk = dimFW−k.
(2) Prove that Ek : W−k → Wk is an isomorphism.
(3) Show that dimFWk+2 ≤ dimFWk for all k ≥ 0, that is, the two sequences

. . . , dimFW4, dimFW2, dimFW0, dimFW−2, dimFW−4, . . .

. . . , dimFW3, dimFW1, dimFW−1, dimFW−3, . . .

are unimodal.
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5.2. Weight space decompositions and the narrow sense of SLP. We now
show that there is a close connection between artinian algebras satisfying SLPn and
the representations of sl2.

Remark 5.16. If A is a graded artinian F-algebra and L is a linear form, then we can
view A as a F[L]-module since by the universal mapping property of polynomial rings
there exists a well defined ring homomorphism F[L] → A which maps L 7→ L. Since
F[L] is a PID and A is a module over it, the structure theorem for modules over PIDs
says that there is a module isomorphims

A ∼= F[L]/(pe11 )⊕ · · · ⊕ F [L]/(pekk )

where each pi is a prime element of F[L] (no free part since A is finite dimensional).
Since A is furthermore graded the elementary divisors peii must be homogeneous el-
ements of F[L], thus pi = L for all i. This implies that A decomposes as a direct
sum

A ∼= S(1) ⊕ · · · ⊕ S(k), with S(i) ∼= F[L]/(Lei).

The cyclic F[L] modules S(i) are the strands of multiplication by L on A which were
introduced in the lectures regarding the Jordan type. This follows because the action
of L on S(i) is given by a single Jordan block of size ei.

Here is the connection between SLPn and the representations of sl2:

Corollary 5.17. The following are equivalent

(1) S is a cyclic graded F[L] module i.e. S ∼= F[L]/(Ld) (not necessarily degree
preserving isomorphism)

(2) S ∼= F[x, y]d−1 as an irreducible representation of sl2 with Es = Ls.

Proof. This follows because both the action of L on S as well as the action of E on
F[x, y]d−1 is given by a single Jordan block matrix. Once the basis of S has been fixed
to be 1, L, L2, . . . , Ld−1, the action of H and F can be simply defined to be the one
given by the matrices displayed in Theorem 5.10. �

If we put the sl2-module structures on the individual strands together we obtain:

Theorem 5.18 (SLPn via weight decomposition). Let A be a graded artinian algebra
of socle degree c and let L ∈ A1. The following are equivalent

(1) L is a strong Lefschetz element on A in the narrow sense,
(2) A is an sl2(F)-representation with E = ×L and the weight space decomposition

of A coincides with the grading decomposition via weight(v) = 2 deg(v) − c.
This means that

A =
c⊕
i=0

Ai =
c⊕
i=0

W2i−c(A), where Ai = W2i−c(A).

Proof sketch. Suppose L is a strong Lefschetz element on A in the narrow sense. We
construct an sl2(F) triple in EndF(A) as follows: let E = ×L : A → A. Consider the
Jordan decomposition of A with respect to the endomorphism E written as A =

⊕
Vi.

For each Vi, let Fi, Hi : Vi → Vi to be the endomorphisms of Vi given with respect to the
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basis in which E
∣∣
Vi

is in Jordan form by the matrices in (5.3) and (5.4), respectively,

where d = dim(Vi) − 1. Setting H =
⊕

Hi and F =
⊕

Fi, one can check E,H, F is
an sl2(F) triple. Furthermore, from the lectures on Jordan type one knows that the
Jordan blocks of L are centered around the middle degree of A. It follows that if v is
an eigenvector of weight 2k− d it is in degree (c− d)/2 + k (note that c ≡ d (mod 2)).
Substituting i = (c− d)/2 + k it follows that W2i−c(A) = Ai.

Conversely, suppose A is an sl2(F)-representation with E = ×L. Then one can use
the information about the grading to verify that the Jordan blocks are centered around
degree bc/2c. Thus the Jordan degree type is the transpose of the Hilbert function of
A. By the lectures on Jodan type it follows that L is a strong Lefschetz element on A
in the narrow sense. �

5.3. Tensor products. From Theorem 5.18, we can deduce how SLPn behaves when
we take tensor products. We need the following lemma.

Lemma 5.19. If F is an algebraically closed field of characteristic zero A,A′ are asso-
ciative algebras which are representations of sl2(F) , then so is A⊗FA

′ with the action
g · (v⊗ v′) = (gv)⊗ v′+ v⊗ (gv′). If v, v′ are weight vectors then v⊗ v′ is also a weight
vector with weight(v ⊗ v′) = weight(v) + weight(v′).

Proof. We show the statement about weights only: say weight(v) = λ and weight(v′) =
λ′ so that Hv = λv,Hv′ = λv′. Then

H(v ⊗ v′) = (Hv)⊗ v′ + v ⊗ (Hv′) = λv ⊗ v′ + v ⊗ λ′v′ = (λ+ λ′)v ⊗ v′

shows that v ⊗ v′ is a weight vector with weight λ+ λ′. �

Theorem 5.20. Let F be an algebraically closed field of characteristic zero. If L is
a strong Lefschetz element in the narrow sense on A and if L′ is a strong Lefschetz
element in the narrow sense on A′ then L⊗ 1 + 1⊗L′ is a strong Lefschetz element in
the narrow sense on A⊗F A

′.

Proof. By Theorem 5.18 we have that if c, c′ are the socle degrees of A,A′, respectively,
then Ai = W2i−c(A) and A′j = W2j−c′(A

′), so

A =
c⊕
i=0

Ai =
c⊕
i=0

W2i−c(A) and A′ =
c′⊕
j=0

A′j =
c′⊕
j=0

W2j−c′(A
′) (5.5)

imply

A⊗F A
′ =

c,c′⊕
i=0,j=0

Ai ⊗F A
′
j =

c,c′⊕
i=0,j=0

W2i−c(A)⊗F W2j−c′(A
′). (5.6)

From the fact that deg(v ⊗ v′) = deg(v) + deg(v′) and (5.5) we deduce that

(A⊗F A
′)k =

c⊕
i=0

Ai ⊗F A′k−i.
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Note that the maximum socle degree of A⊗FA
′ is c+ c′. From the identity weight(v⊗

v′) = weight(v) + weight(v′) and (5.6) we deduce that

W2k−c−c′(A⊗F A
′) =

c⊕
i=0

W2i−c(A)⊗F W2(k−i)−c′(A
′) =

c⊕
i=0

Ai ⊗F A
′
k−i.

Comparing, we see that (A ⊗F A
′)k = W2k−c−c′(A ⊗F A

′), where the weight spaces on
A⊗F A

′ correspond to the action

E(v ⊗ v′) = Ev ⊗ v′ + v ⊗ Ev′ = Lv ⊗ v′ + v ⊗ L′v′ = (L⊗ 1 + 1⊗ L′)v ⊗ v′.

Theorem 5.18 gives that L⊗ 1 + 1⊗ L′ is a strong Lefschetz element on A⊗F A
′. �

A corollary of Theorem 5.20 is the following

Corollary 5.21 (Tensor product preserves SLPn). If F be an algebraically closed field
of characteristic zero2 and A,A′ are graded artinian F-algebras which satisfy SLPn,
then A⊗F A

′ also satisfies SLPn.

From the above corollary one can easily deduce Stanley’s theorem applying induction
on the embedding dimension n.

Corollary 5.22 (Stanley’s Theorem - second proof). If F has characteristic 0, then
the algebra A = F[x1, . . . , xn]/(xd11 , . . . , x

dn
n ) = F[x1]/(xd11 )⊗F · · ·⊗FF[xn]/(xdnn ) satisfies

SLP in the narrow sense.

Remark 5.23.

(1) While the symmetric unimodality of Hilbert functions is preserved under taking
tensor product, just unimodality is not. For example for

A = F[x, y, z]/(x2, xy, y2, xz, yz, z5)

with Hilbert function 1, 3, 1, 1, 1 we have that the Hilbert function of A⊗F A is
1, 6, 11, 8, 9, 8, 3, 2, 1.

(2) While the SLPn is preserved under taking tensor product, the SLP (not in the
narrow sense) is not preserved by tensor product. In the example above A has
SLP but since its Hilbert function is not unimodal, A ⊗F A cannot have the
SLP.

The issue in part 2 of the remark is remedied by restricting to Gorenstein algebras,
which have symmetric Hilbert function. Recall that for algebras with symmetric Hilbert
function the SLP is equivalent to SLPn. Thus we have:

Corollary 5.24. If F be an algebraically closed field of characteristic zero3 and A,A′

are graded artinian Gorenstein F-algebras which satisfy SLP, then A⊗FA
′ also satisfies

SLP.

2This assertion holds true regardless of any assumptions on F, but not by the proof given here.
3This assertion holds true regardless of any assumptions on F, but not by the proof given here.



LEFSCHETZ PROPERTIES THROUGH A TOPOLOGICAL LENSE 19

6. Gorenstein rings via Macaulay inverse systems

The description of the dual ring of the polynomial ring in Section 6.1 is taken from
[6]. The material in Section 6.2 follows Eisenbud’s Commutative Algebra book [7] and
Geramita’s lectures [8, Lecture 9]. The material on Hessians in Section 6.3 follows [17].

6.1. The graded dual of the polynomial ring. Recall the notion of a dual for an
F-vector space:

Definition 6.1. Let V be an F-vector space. Its dual is

V ∗ = HomF(V,F) = {ϕ : V → F | ϕ is F− linear},
the vector space of linear functionals on V .

Exercise 6.2. If V is a finite dimensional vector space, there is a natural isomorphism
of vector spaces V ∼= V ∗∗.

We extend this idea to construct duals of rings and modules.

Definition 6.3 (Divided power algebra). Say R = F[x1, . . . , xn] is the polynomial ring.
Let

R∗ := Homgr
F (R,F) =

⊕
i≥0

HomF(Ri,F).

We use a standard shorthand for monomials: if a = (a1, . . . , an) ∈ Zn≥0, then xa =

xa11 · · ·xann is the corresponding monomial in R. If xa is in Rd, we write X [a] for the
functional (in R∗d) on Rd which sends xa to 1 and all other monomials in Rd to 0. We’ll
make the convention from now on to write Xi for the duals of the elements xi in R∗1.
As a vector space, R∗ is isomorphic to a polynomial ring in the n variables X1, . . . , Xn.
However, as we recall shortly, R∗ has the structure of a divided power algebra. For this
reason, we call X [a] a divided monomial and we write R∗ = F[X1, . . . , Xn]DP . Here the
notation DP indicates a divided power algebra.

The ring R acts on R∗ by contraction, which we denote by •. That is, if xa is a
monomial in R and X [b] is a divided monomial in R∗, then

xa •X [b] =

{
X [b−a] if b ≥ a,

0 otherwise.

This action is extended linearly to all of R and R∗. This action of R on R∗ gives a
perfect pairing of vector spaces Rd × R∗d → F for any degree d ≥ 0. Suppose U is a
subspace of Rd. We define

U⊥ = {g ∈ R∗d : f • g = 0 for all f ∈ U}.
Macaulay [16] introduced the inverse system of an ideal I of R to be

I−1 := AnnR∗(I) = {g ∈ R∗ : f • g = 0 for all f ∈ I}.
If I is a homogeneous ideal of R then the inverse system I−1 can be constructed
degree by degree using the identification (I−1)d = I⊥d . We return to this notion in
Definition 6.11.
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A priori, R∗ is simply a graded R-module. However, R∗ can be equipped with a
multiplication which makes it into a ring. Suppose a = (a1, . . . , an),b = (b1, . . . , bn) ∈
Zn≥0. The multiplication in R∗ is defined on monomials by

X [a]X [b] =

(
a + b

a

)
X [a+b], (6.1)

where

a! =
N∏
i=0

ai! and

(
a + b

a

)
=

n∏
i=1

(
ai + bi
ai

)
. (6.2)

This multiplication is extended linearly to all of R∗. We see from the above definition

that if a = (a1, . . . , an) then X [a] =
∏n

i=1X
[ai]
i .

Exercise 6.4. Now set Xa =
∏n

i=1X
ai
i , where the multiplication occurs in the divided

power algebra as defined above. Deduce from the above definition that

Xa = a!X [a]. (6.3)

Remark 6.5. In characteristic zero, a! never vanishes and so, by (6.3), R∗ is generated
as an algebra by X0, . . . , XN , just like the polynomial ring. However, in charateristic

p > 0, R∗ is infinitely generated by all the divided power monomials X
[pki ]
j for all

j = 0, . . . , N and kj ≥ 0. The exercise below justifies this last assertion.

Exercise 6.6. Prove that in characteristic p for any a = (a1, . . . , an) where aj =∑
aijp

i, we have

X [a] =
n∏
j=1

∏
i

(X
[pi]
j )aij .

Hint: Use Lucas’ identity – given base p expansions a =
∑
aip

i and b =
∑
bip

i for
a, b ∈ N, then (

b

a

)
=
∞∏
i=0

(
bi
ai

)
mod p.

We now revisit the characteristic zero case. Suppose F is a field of characteristic
zero and let S = F[X1, . . . , Xn] be a polynomial ring. Consider the action of R on S
by partial differentiation, which we represent by ‘◦’. That is, if a = (a1, . . . , an) ∈ Zn≥0,
xa = xa01 · · · xann is a monomial in R, and g ∈ S, we write

xa ◦ g =
∂ag

∂Xa

for the action of xa on g (extended linearly to all of R). In particular, if a ≤ b, then

xa ◦Xb =
b!

(b− a)!
Xb−a,

where we use the conventions in (6.2). This action gives a perfect pairing Rd×Sd → F,
and, given a homogeneous ideal I ⊂ R, we define I⊥d and I−1 in the same way as we
do for contraction.
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Since we are in characteristic zero, the map of rings Φ : S → R∗ defined by Φ(Xi) =
Xi extends to all monomials via (6.3) to give Φ(ya) = Y a = a!Y [a]. Thus S and R∗ are
isomorphic. Moreover, if F ∈ R and g ∈ S, then Φ(F ◦ g) = F •Φ(g) [8, Theorem 9.5],
so S and R∗ are isomorphic as R-modules.

6.2. Macaulay inverse systems.

Definition 6.7 (Dualizing functor). Let M be a finitely generated R-module. Define
the dual of M to be D(M) = HomR(M,R∗). Let f : M → N be an R-module
homomorphism. Define D(f) to be the induced R-module homomorphism

D(f) : D(N) = HomR(N,R∗)→ D(M) = HomR(M,R∗)

given by
D(f)(ϕ) = ϕ ◦ f.

This makes D into a contravariant functor in the category of finitely generated R-
modules.

Exercise 6.8. Let A = R/I be an artinian F-algebra and let M be a finitely generated
A-module. Recall that we defined D(M) = HomR(M,R∗) to be an R-module. This
set also has an A-module structure induced from the A-module structure of M , i.e.,
multiplication by elements of a is given by

aφ(x) = φ(a · x), ∀a ∈ A, x ∈M.

In this exercise we also consider the set M∗ = HomF(M,F) with its two structures
induced from the R-module structure of M and from the A-module structure of M ,
respectively, as described in the equation displayed above. Below we show thatD(M) ∼=
M∗, so an equivalent way to define the dual module dual to M is M∗ (with its R-module
structure).

(1) Show that D(M) ∼= HomF(M,F) as R-modules.
Hint: Hom-tensor adjointness may come in handy.

(2) Show that D(M) ∼= HomF(M,F) also as A-modules.

We now come to a form of duality that involves the above defined functor.

Theorem 6.9 (Matlis duality). The functor D induces an anti-equivalence of cate-
gories between

{noetherian R-modules} ↔ {artinian R-submodules of R∗}
given by sending M 7→ D(M).

Next we wish to make the meaning of D(M) more concrete in the special case when
M = R/I is a cyclic R-module.

Lemma 6.10. Suppose I is a homogeneous ideal of a polynomial ring R. We compute

D(R/I) = HomR(R/I,R∗) ∼= AnnR∗(I) = (0 :R∗ I) = {g ∈ R∗ | f • g = 0 ∀f ∈ I}.
Definition 6.11 (Inverse system). Suppose I is a homogeneous ideal of a polynomial
ring R. The inverse system of I is the vector space

I−1 = {g ∈ R∗ | f • g = 0,∀f ∈ I}.
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Remark 6.12. Don’t let the notation deceive you! If I is an ideal of R, it does not mean
that I⊥ is an ideal (or R∗-submodule) of R∗. It is just an R-module which happens to
be a subset of R∗.

Example 6.13. Concretely, say

(1) I = (x2, y3) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{X2, XY, Y 2, X, Y, 1} = R •XY 2

is the R-submodule of R∗ generated by XY 2.
(2) I = (x2, xy2, y3) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{XY, Y 2, X, Y, 1} = R •XY +R • Y 2

is an R-submodule of R∗ with two generators.

Next, take

Example 6.14. (1) I = (x) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{Y i | i ≥ 0}.
(2) I = (xd) ⊆ R = F[x, y]. Then

I−1 = (0 :R∗ I) = Span{X iY J | 0 ≤ i ≤ d− 1, j ≥ 0}
= R∗0 ⊕R∗1 ⊕R∗2 ⊕ · · · ⊕R∗d−1 ⊕ Y R∗d−1 ⊕ Y 2R∗d−1 ⊕ · · · ⊕ Y kR∗d−1 ⊕ · · ·

Both of the above (0 :R∗ I) are non-finitely generated R-module. We shall see below
that this corresponds to R/I not being artinian.

Exercise 6.15. Generalize Example 6.14 to find the inverse system of the ideal defining
a point in projective n-space and the inverse systems of all of the powers of this ideal.

We now wish to study the inverse functor involved with in the Matlis duality Theo-
rem 6.9. In order to do this we define the inverse system of an F-subspace of R∗.

Definition 6.16. Let V be an F-vector subspace of the F-algebra R∗. The inverse
system of V is

AnnR(V ) = {f ∈ R | f ◦ v = 0,∀v ∈ V }.
We will be most interested in the case when V = Span{F} is a 1-dimensional F-vector
space and thus

AnnR(F ) = {f ∈ R | f ◦ F = 0}.

Macaulay inverse system duality is a concrete version of Matlis duality Theorem 6.9
which can be stated in terms of the inverse systems defined above as follows:

Theorem 6.17 (Macaulay inverse system duality). With notation as above, there are
bijective correspondence between

{R−modules M ⊆ R∗} ↔ {R/I | I ⊆ R homogeneous ideal}
M 7→ D(M) = R/AnnR(M)

I⊥ = D(R/I) 7→R/I.
Furthermore, we have the additional correspondences
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(a) M finitely generated ⇐⇒ R/AnnR(M) artinian
(b) M = R ◦ F cyclic ⇐⇒ R/AnnR(F ) artinian Gorenstein

deg(F ) = socle degree of R/AnnR(F ).

The value of Theorem 6.17 often lies in producing examples of artinian Gorenstein
rings.

Definition 6.18. In view of statement (b) in Theorem 6.17, the polynomial F ∈ R∗
is called a Macaulay dual generator for R/AnnR(F ).

Example 6.19. The artinian Gorenstein algebra with Macaulay dual generator

F = X2 + Y 2 + Z2

is the ring of Exercise 6.22

F[x, y, z]/AnnF[x,y,z](F ) = F[x, y, z]/(x2 − y2, y2 − z2, z2 − x2, xy, xz, yz).

Example 6.20. The artinian Gorenstein algebra with Macaulay dual generator

F = Xd1
1 · · ·Xdn

n

is the monomial complete intersection

F[x1, . . . , xn]/AnnF[x1,...,xn](F ) = F[x1, . . . , xn]/(xd1+1
1 , . . . , xdn+1

n ).

Definition 6.21. For a graded ring A and an integer d, define A(d) to be a the graded
ring A with grading modified such that A(d)i = Ad+i.

Exercise 6.22. For any homogeneous polynomial F ∈ R∗ of degree d, prove

(1) AnnR(F )⊥ = R ◦ F . This statement is an instance of Macaulay’s double anni-
hilator theorem.

(2) the cyclic ring A = R/AnnR(F ) is artinian Gorenstein if and only if the function
A→ D(A)(−d), a 7→ [b 7→ (ab) ◦ F ] is an isomorphism.

Hint for (1): Start by showing the equality is true in degree d, then use the R-module
structure.
Hint for (2): Use Proposition 3.12. Prove that the function a 7→ (a • F )(0) is an
orientation on A and that A satisfies Poincaré duality with respect to this orientation.

In view of Exercise 6.22 we can state an alternate definition of graded Gorenstein rings.

Definition 6.23. An artinian graded ring A is Gorenstein of socle degree d if and only
if A ∼= D(A)(−d) as graded A-modules (degree preserving isomorphism).

6.3. SLP for Gorenstein rings via Hessian matrices. For this section let R =
F[x1, . . . , xn] be a polynomial ring and R∗ its graded dual. We will further assume that
char(F) = 0.

In this section we use that R∗ is isomorphic to F[X1, . . . , Xn] with R-action xi ◦F =
∂F
∂Xi

. We will use this description for R∗.

Lemma 6.24. Let F ∈ R∗c and let L = a1x1 + · · ·+ anxn ∈ R1. Then

Lc ◦ F = c! · F (a1, . . . , an).



24 ALEXANDRA SECELEANU

Proof.

Lc ◦ F =
∑

i1+···+in=c

c!

i1! · · · in!
ai11 · · · ainn x

i1
1 · · ·xinn ◦ F = c! · F (a1, . . . , an).

�

Definition 6.25 (Higher Hessians). Let F ∈ R∗ be a homogeneous polynomial and
let B = {b1, . . . , bs} ⊆ Rd be a finite set of homogeneous polynomials of degree d ≥ 0.
We call

HessdB(F ) = [bibj ◦ F ]1≤i,j≤s and hessdB(F ) = det HessdB(F )

the d-th Hessian matrix and the d-th Hessian determinant of F with respect to B,
respectively.

Remark 6.26. If B = {x1, . . . xn} then Hess1
B(F ) = [xixjF ]1≤i,j≤n =

[
∂F

∂Xi∂Xj

]
1≤i,j≤n

is

the classical Hessian of F .

Hessians are useful in establishing the SLP for artinian Gorenstein rings.

Theorem 6.27 (Hessian criterion for SLP). Assume F is a field of characteristic zero.
Let A be a graded artinian Gorenstein ring with Macaulay dual generator F ∈ R∗c .
Then A has the SLP if and only if

hessiBi
(F ) 6= 0 for 0 ≤ i ≤ b c

2
c

where Bi is some (any) basis of Ai.

Proof. From the hypothesis and Theorem 6.17 we have that A = R/AnnR(F ) has socle
degree d = deg(F ).

Since A is Gorenstein, A has symmetric Hilbert function, so A has SLP if and
only if A has SLP in the narrow sense, i.e. there exists L ∈ A1 such that for any
0 ≤ i ≤ bd

2
c the multiplication maps Lc−2i : Ai → Ac−i are vector space isomorphisms.

Say L = a1x1 + · · ·+ anxn.
Recall that the isomorphism A ∼= D(A)(−c) = (R◦F )(−c), a 7→ a◦F induces vector

space isomorphisms Ad−i ∼= A∗i also defined by a 7→ [b 7→ b ◦ (a ◦ F ) = (ba) ◦ F ]. The
composite map

Ti : Ai
Lc−2i

−→ Ac−i
F−→ A∗i

is an isomorphism if and only if multiplication by Lc−2i is an isomorphism. Let Bi be

any basis for Ai and let B∗i be its dual, which is a basis for A∗i . The matrix [t
(i)
jk ]for Ti

with respect to these bases is defined as follows

Ti(bj) =
s∑

k=1

t
(i)
jk b
∗
k,

hence t
(i)
jk = Ti(bj)(bk) = F (bjL

c−2i)(bk) = (c − 2i)!(bjbk ◦ F )(a1, . . . , an), thus Ti is an
isomorphism for some L ∈ R1 if and only if

hessiBi
F (a1, . . . , an) = det [bibj ◦ F (a1, . . . , an)]1≤i,j≤s 6= 0.
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Overall the SLP holds if and only if for 0 ≤ i ≤ b c
2
c the hessian determinant hessiBi

F
does not vanish identically. �

Example 6.28. Say F = X2 +Y 2 +Z2. Then with respect to the standard monomial
basis for each Ri

hess0(F ) = F

hess1(F ) = det

2 0 0
0 2 0
0 0 2

 = 8

hessi(F ) = 0 for i ≥ 2.

Example 6.29. Let G = XYW 3 + X3ZW + Y 3Z2. Then A = R/AnnR(G) has
Hilbert function 1, 4, 10, 10, 4, 1 and a basis for A1 is B1 = {x, y, z, w} whereas a basis
for A2 is B2 = {x2, xy, xz, xw, y2, yz, yw, z2, zw, w2}. Furthermore

hess0(G) = G

hess1
B1

(G) = det


6XZW W 3 3X2W 3X2Z + 3YW 2

W 3 6Y Z2 6Y 2Z 3XW 2

3X2W 6Y 2Z 2Y 3 X3

3X2Z + 3YW 2 3XW 2 X3 6Z2W

 6= 0

hess2
B2

(G) = det



0 0 6w 6 z 0 0 0 0 6x 0
0 0 0 0 0 0 0 0 0 6w

6w 0 0 6x 0 0 0 0 0 0
6 z 0 6 x 0 0 0 6w 0 0 6 y
0 0 0 0 0 12 z 0 12 y 0 0
0 0 0 0 12 z 12 y 0 0 0 0
0 0 0 6w 0 0 0 0 0 6x
0 0 0 0 12 y 0 0 0 0 0

6x 0 0 0 0 0 0 0 0 0
0 6w 0 6 y 0 0 6x 0 0 0


= 0.

We conclude that the map L : A2 → A3 fails to have maximum rank for all L ∈ A1.
However the map L3 : A1 → A4 does have maximum rank.

Exercise 6.30 (R. Gondim [9]). Let x1, . . . , xn and u1, . . . , um be two sets of indeter-
minates with n ≥ m ≥ 2. Let fi ∈ F[x1, . . . , xn]k and gi ∈ F[u1, . . . , um]e for 1 ≤ i ≤ s
be linearly independent forms with 1 ≤ k < e. If s >

(
m−1+k

k

)
, then

F = f1g1 + · · ·+ fsgs

is called a Perazzo form and A = F[x1, . . . , xn, u1, . . . , um] is called a Perazzo algebra.

(1) Show that hessk(F ) = 0 and so A does not have SLP.
(2) Make conjectures regarding the Hilbert functions of Perazzo algebras.
(3) Make conjectures regarding the WLP for Perazzo algebras.
(4) Do there exist two Perazzo algebras A and B having the same Hilbert function

so that A has WLP and B does not?
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Some answers to (2) and (3) can be found in [1].

Corollary 6.31. Let F ∈ F[X1, . . . , Xn], G ∈ F[Y1, . . . , Ym] be homogeneous polynomi-
als of the same degree. Then A = F[x1, . . . , xn]/AnnR(F ) and B = F[y1, . . . , ym]/AnnR(G)
have SLP if and only if

C = F[x1, . . . , xn, y1, . . . , ym]/AnnR(F +G) satisfies SLP.

Proof. It turns out that for 1 ≤ i < deg(F ) a basis β of Ci is given by the union of
a basis β′ of Ai and a basis β′′ of Bi (for a proof of this refer to Proposition 7.8 and
Eq. (7.2)) and hence the hessians of F +G look like

Hessi(F +G) =
[
bibj(F +G)

]
bi,bj∈β

=

[
b′ib
′
j(F ) 0
0 b′′i b

′′
j (F )

]
b′i,b
′
j∈β′,b′′i ,b′′j ∈β′′

=

[
Hessi(F ) 0

0 Hessi(G)

]
hessi(F +G) = hessi(F ) hessi(G).

Now we see that hessi(F +G) 6= 0 if and only if hessi(F ) 6= 0 and hessi(G) 6= 0, which
gives the desired conclusion. �

7. Topological ring constructions and the Lefschetz properties

We have seen in Section 2 that the Lefschetz properties emerged from algebraic
topology. Now we return to this idea implementing some constructions that originate
in topology at the ring level. The material in Section 7.1 is taken from [13] and the
material in Section 7.2 is taken from [14].

7.1. Fiber products and connected sums. We first consider the operation termed
connected sum. A connected sum of manifolds along a disc is obtained by identifying
a disk in each (with opposite orientations). One can more generally take connected
sums by identifying two homeomorphic sub-manifolds, one from each summand. If
the cohomology rings of the two summands are A and B and the cohomology ring
of the common submanifold is T , then it turns out that the cohomology ring of the
connected sum is A#TB, a ring that we term the connected sum of A and B over T
in Definition 7.7.

To define a connected sum of rings we need a preliminary construction. Recall that
an oriented AG algebra is a pair (A,

∫
A

) with A an AG algebra and
∫
A

an orientation
as in Proposition 3.12. A choice of orientation on A also corresponds to a choice of
Macaulay dual generator.

Exercise 7.1. Every orientation on A can be written as the function
∫
A

: A → K
defined by

∫
A
g = (g ◦ F )(0) for some Macaulay dual generator F of A. The notation

(g ◦ F )(0) refers to evaluating the element g ◦ F of R′ at X1 = · · · = Xn = 0.

Next we discuss how the orientations of two AG algebras relate.
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Definition 7.2 (Thom class). Let (A,
∫
A

) and (T,
∫
T

) be two oriented AG K-algebras
with of socle degree d for A and k for T , respectively, with d ≥ k. Let π : A → T
be a graded map. By [13, Lemma 2.1], there exists a unique homogeneous element
τA ∈ Ad−k such that

∫
A

(τAa) =
∫
T

(π(a)) for all a ∈ A ; we call it the Thom class for
π : A→ T .

Note that the Thom class for π : A → T depends not only on the map π, but also
on the orientations chosen for A and T .

Example 7.3. Let (A,
∫
A

) be an oriented AG K-algebra with socle degree reg(A) = d.
Consider (K,

∫
K

) where fK : K → K is the identity map. Then the Thom class for the
canonical projection π : A→ K is the unique element asoc ∈ Ad such that

∫
A
asoc = 1.

Exercise 7.4. Given a homomorphism π : A→ T of AG algebras having dual gener-
ators F,H of degrees d and k, respectively, with d ≥ k, show that the Thom class of
Definition 7.2 is the unique element τ of Ad−k such that τ ◦ F = H.

Definition 7.5. Given graded F-algebras A, B, and T , and graded F-algebra maps
πA : A→ T and πB : B → T , the fiber product of A and B over T (with respect to πA
and πB) is the graded F-subalgebra of A⊕B

A×T B = {(a, b) ∈ A⊕B | πA(a) = πB(b)} .

Let ρ1 : A ×T B → A and ρ2 : A ×T B → B be the natural projection maps. It is
well known that fiber products are pullbacks in the category of F algebras and hence
they satisfy the following universal property.

Lemma 7.6. The fiber product A ×T B satisfies the following universal property: If
C is another F-algebra with maps φ1 : C → A and φ2 : C → B such that πA ◦ φ1(c) =
πB◦φ2(c) for all c ∈ C, then there is a unique F-algebra homomorphism Φ: C → A×TB
which makes the diagram below commute:

C
Φ

##

φ1

""

φ2

$$

A×T B
ρ1
//

ρ2
��

A

πA

��

B πB
// T.

(7.1)

By [13, Lemma 3.7] the fiber product is characterized by the following exact sequence
of vector spaces:

0→ A×T B → A⊕B πA−πB−−−−→ T → 0, (7.2)

whence the Hilbert function of the fiber product satisfies

HA×TB = HA +HB −HT . (7.3)

Henceforth we assume that πA(τA) = πB(τB), so that (τA, τB) ∈ A×T B.
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Definition 7.7. The connected sum of the oriented AG K-algebras A and B over T
is the quotient ring of the fiber product

A×T B := {(a, b) ∈ A⊕B | πA(a) = πB(b)}

by the principal ideal generated by the pair of Thom classes (τA, τB), i.e.

A#TB = (A×T B)/〈(τA, τB)〉.

By [13, Lemma 3.7] the connected sum is characterized by the following exact se-
quence of vector spaces:

0→ T (k − d)→ A×T B → A#TB → 0. (7.4)

Therefore, the Hilbert series of the connected sum satisfies

HFA#TB(t) = HFA(t) +HFB(t)− (1 + td−k)HFT (t). (7.5)

When T = F we have an easy description of the fiber product and connected sum.

Proposition 7.8. Let R = F[x1, . . . , xn], R′ = F[y1, . . . , ym] be polynomial rings. Let(
A = R/I,

∫
A

)
and

(
B = R′/I ′,

∫
B

)
be oriented AG algebras each with socle degree d,

and let πA : A→ F and πB : B → F be the natural projection maps with Thom classes
τA ∈ Ad and τB ∈ Bd. Then the fiber product A×F B has a presentation

A×F B ∼=
F[x1, . . . , xn, y1, . . . , ym]

(xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m) + I + I ′
.

and the connected sum A#FB has a presentation

A#FB ∼=
F[x1, . . . , xn, y1, . . . , ym]

(xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m) + I + I ′ + (τA + τB)
.

In particular, if A and B are standard graded then so are A×F B and A#FB.

Example 7.9 (Standard graded fiber product and connected sum). LetA = F[x, y]/(x2, y4)
and B = F[u, v]/(u3, v3) each with the standard grading deg(x) = deg(y) = deg(u) =
deg(v) = 1. Let T = F[z]/(z2), and define maps πA : A → T , πA(x) = z, πA(y) = 0
and πB : B → T , πB(u) = z, πB(v) = 0. Then the fiber product A×T B is generated
as an algebra by elements z1 = (y, 0), z2 = (x, u), and z3 = (0, v), all having degree
one. One can check that it has the following presentation:

A×T B =
F[z1, z2, z3]

〈z4
1 , z

3
2 , z

3
3 , z1z3, z1z2

2〉
. (7.6)

The Hilbert function of the fiber product is

H(A×T B) =(1, 3, 5, 4, 2)

=(1, 2, 2, 2, 1) + (1, 2, 3, 2, 1)− (1, 1, 0, 0, 0)

=H(A) +H(B)−H(T ).

Fix orientations on A, B, and T by
∫
A

: xy3 7→ 1,
∫
B

: u2v2 7→ 1, and
∫
T

: z 7→ 1,
respectively. Then the Thom classes for πA : A→ T and πB : B → T are, respectively,
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τA = y3, τB = uv2. Note that πA(τA) = 0 = πB(τB), hence (τA, τB) ∈ A ×T B, and in
terms of Presentation (7.6) we have (τA, τB) = z3

1 + z2z
2
3 . Therefore we see that

A#TB =
F[z1, z2, z3]

〈z4
1 , z

3
2 , z

3
3 , z1z3, z1z2

2 , z
3
1 + z2z2

3〉
. (7.7)

The Hilbert function of the connected sum is

H(A#TB) =(1, 3, 5, 3, 1)

=(1, 2, 2, 2, 1) + (1, 2, 3, 2, 1)− (1, 1, 0, 0, 0)− (0, 0, 0, 1, 1)

=H(A) +H(B)−H(T )−H(T )[3]

However, if T 6= F the presentation of the connected sum and fiber product can be
complicated and they need not be standard graded.

Example 7.10 (Non-standard graded fiber product and connected sum). Let

A = F[x]/(x4), B = F[u, v]/(u3, v2), T = F[z]/(z2),

have Hilbert functions H(A) = (1, 1, 1, 1) and H(B) = (1, 2, 2, 1). Define maps
πA : A → T , πA(x) = z and πB : B → T , πB(u) = z, πB(v) = 0. Then the fibered
product has the presentation

A×T B =
F[z1, z2, z3]

(z4
1 , z

2
2 , z

2
3 , z1z3, z2

1z2 − z2z3)
, where


z1 = (x, u)

z2 = (0, v)

z3 = (0, u2).

Here z1, z2 have degree one, and z3 has degree two. We then have a presentation for
the connected sum C = A#TB = A×T B/(τ), whence

A#TB ∼=
F[z1, z2, z3]

(z4
1 , z

2
2 , z

2
3 , z1z3, z2

1z2 − z2z3, (z2
1 − z3) + z1z2)

∼=
F[z1, z2]

(z3
1 + z2

1z2, z2
2)
.

It has Hilbert function H(C) = (1, 2, 2, 1) = H(A) + H(B) − H(T ) − H(T )[1] as in
(7.5). It is interesting to note that the connected sum A#TB has a standard grading
whereas the fibered product A×T B does not.

Finally, we have the following result which shows how the Lefschetz properties of the
components influence the Lefschetz property of the fiber product and connected sum.

Theorem 7.11. (1) If A and B are AG algebras of the same socle degree that each
have the SLP, then the fiber product D = A ×F B over a field F also has the
SLP. If A and B have the standard grading, then the converse holds as well.

(2) If A and B both have the SLP, then the connected sum C = A#FB over a field
F also has the SLP. If A and B have the standard grading, then the converse
holds as well.

(3) Let A, T be AG algebras with socle degrees d, k respectively and let πA : A →
T be a surjective ring homomorphism such that its Thom class τA satisfies
πA(τA) = 0. Let x be an indeterminate of degree one, set B = T [x]/(xd−k+1),
and define πB : B → T to be the natural projection map satisfying πB(t) = t
and πB(x) = 0. In this setup, if A and T both satisfy the SLP, then the fiber
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product A ×T B also satisfies the SLP. Moreover if the field F is algebraically
closed, then the connected sum A#TB also satisfies the SLP.

(4) Let A and B be standard graded AG algebras of socle degree d satisfying the SLP,
and let T be a graded AG algebra of socle degree k, with k < bd−1

2
c, endowed

with surjective F-algebra homomorphisms πA : A → T and πB : B → T . Then
the resulting fiber product A ×T B and the connected sum A#TB both satisfy
the WLP.

Example 7.12. Take

F = xy(xz − yt) ∈ K[x, y, z, t]

and set A = K[x, y, z, t]/Ann(F ). Then

Ann(F ) = (zt, xz + yt, x2t, y2z, x2y2, x3, y3, z2, t2),

A is a connected sum

A = K[x, y, z]/Ann(x2yz)#K[x,y]/Ann(xy)K[x, y, t]/Ann(xy2t),

and the Hilbert function of A is (1, 4, 6, 4, 1). By Theorem 7.11 (4), since the summands
of A are monomial complete intersections, A has WLP if the characteristic of F is 0.

Example 7.13. Take

F = x3yz − xy3t = xy(x2z − y2t) ∈ K[x, y, z, t]

and set A = K[x, y, z, t]/Ann(F ). Then

Ann(F ) = (z2, t2, tz, x2t, y2z, x2z + y2t, y4, x2y2, x4),

A is a connected sum

A = K[x, y, z]/Ann(x3yz)#K[x,y]/Ann(xy)K[x, y, t]/Ann(xy3t),

and the Hilbert function of A is (1, 4, 7, 7, 4, 1).
The Hessian matrix of F of order two is of the following form

Hess2(F ) = 6



0 y x z 0 0 0
y 0 0 x 0 0 0
x 0 0 0 0 0 0
z x 0 0 0 −y −t
0 0 0 0 0 0 −y
0 0 0 −y 0 0 −x
0 0 0 −t −y −x 0


and it has vanishing determinant. According to the Hessian criteria Theorem 6.27
A does not have WLP because in this case the second Hessian corresponds to the
multiplication map from degree 2 to degree 3. Note that the socle degrees don’t satisfy
the condition in Theorem 7.11 since 2 = k =

⌊
d−1

2

⌋
= 5−1

2
.
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7.2. Cohomological blowups. The second construction is inspired by the geometric
operation of blowing up a smooth projective algebraic variety. The blow-up of such a
space at a point replaces the point with the set of all directions through the point, that
is, a projective space. More generally one can blow up a subset and replace it with
another space called am exceptional divisor. The cohomology ring of the blow-up can
be determined based on the cohomology ring of the original variety (called A below),
that of the subvariety being blown up (called T below) and the way the latter sits
inside the former, specifically captured via the cohomology class of the normal bundle
of the subvariety, encoded via a polynomial fA(ξ) below.

We now explain the algebraic construction for the cohomology ring of a blowup.

Definition 7.14 (Cohomological Blow-Up). For oriented AG algebras A and T of socle
degrees d > k, respectively, and surjective degree-preserving algebra map π : A → T
with Thom class τ ∈ An where n = d − k, set K = Ker(π). Given a homogeneous
monic polynomial fA(ξ) = ξn + a1ξ

n−1 + · · ·+ an ∈ A[ξ] of degree n with homogeneous
elements ai ∈ Ai for 1 ≤ i ≤ n and with an = λ · τ for some non-zero constant λ, we
call the AG algebra Ã below a cohomological blow up of A along π or BUG for short

Ã =
A[ξ]

(ξ ·K, ξn + a1ξ
n−1 + · · ·+ λ · τ︸ ︷︷ ︸
fA(ξ)

)
.

Setting ti = π(ai) for 1 ≤ i ≤ n− 1, the AG algebra

T̃ =
T [ξ]

(ξn + t1ξ
n−1 + · · ·+ λ · π(τ))︸ ︷︷ ︸

fT (ξ)

is called the exceptional divisor of T with parameters (t1, . . . , tn−1, λ). These algebras
fit in the following commutative diagram, where we refer to A as the cohomological
blow down of Ã along π̂.

A //

π

��

Ã

π̂
��

T // T̃ .

Since T̃ is a quotient of a 1-dimensional Gorenstein ring by a non zero-divisor, it is
clear that T̃ is AG. It is shown in [14] that the condition that the last term of fA(ξ)
be a scalar multiple of the Thom class τ is precisely equivalent to Ã being AG.

Example 7.15. Let

A =
F[x, y]

(x3, y3)

π→ T =
F[x, y]

(x2, y)

where π(x) = x and π(y) = 0. Note K = Ker(π) = (x2, y). Orient A and T with socle
generators asoc = x2y2 and tsoc = x; then the Thom class of π is τ = xy2 ∈ A3. Set
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fT (ξ) = ξ3 + xξ2 ∈ T [ξ] and let T̃ be the associated exceptional divisor algebra:

T̃ =
T [ξ]

(fT (ξ))
=

F[x, y, ξ]

(x2, y, ξ3 + xξ2)
.

Consider fA(ξ) = ξ3 + xξ2 + xy2 ∈ A[ξ]. This gives rise to the BUG

Ã =
A[ξ]

(ξ ·K, fA(ξ))
=

F[x, y, ξ]

(x3, y3, x2ξ, yξ, ξ3 + xξ2 + xy2)

which has basis {
1, x, y, ξ, x2, xy, y2, xξ, ξ2, x2y, xy2, xξ2, x2y2

}
and Hilbert function H(Ã) = (1, 3, 5, 3, 1). Here the socle of Ã is generated by ãsoc =
asoc = x2y2, hence Ã is Gorenstein, as expected.

We are now ready to discuss the Lefschetz properties for cohomological blow-up
algebras.

Theorem 7.16. Let F be an infinite field and let π : A→ T be a surjective homomor-
phism of graded AG F-algebras of socle degrees d > k respectively such that both A and
T have SLP. Assume that characteristic F is zero or characteristic F is p > d. Then
every cohomological blow-up algebra of A along T satisfies SLP.

The following example shows that the converse of Theorem 7.16 is not true: if the
cohomological blowup Ã has SLP it does not follow that A has SLP. In other words,
while the process of blowing up preserves SLP, the process of blowing down does not
preserve SLP, nor even WLP.

Example 7.17. As in Exercise C.3, the following example, originally due to U. Perazzo,
but re-examined more recently by R. Gondim and F. Russo [10], is an AG algebra with
unimodal Hilbert function which does not have SLP or WLP:

A =
F[x, y, z, u, v]

Ann(XU2 + Y UV + ZV 2)

=
F[x, y, z, u, v]

(x2, xy, y2, xz, yz, z2, u3, u2v, uv2, v3, xv, zu, xu− yv, zv − yu)
.

Taking the quotient T of A given by the Thom class τ = u2 yields

T =
F[x, y, z, u, v]

Ann(X)
=

F[x, y, z, u, v]

(x2, y, z, u, v)
∼=

F[x]

(x2)
.

Fix a parameter λ ∈ F and define polynomials fT (ξ) ∈ T [ξ] and fA(ξ) ∈ A[ξ] by

fT (ξ) = ξ2 − λxξ and fA(ξ) = ξ2 − λxξ + u2.

Denoting the ideal of relations of A by I we obtain the cohomological blowup

Ã =
F[x, y, z, u, v, ξ]

I + ξ(y, z, u, v) + (fA(ξ))
,

which has Hilbert function H(Ã) = H(A) +H(T )[1] = (1, 6, 6, 1). Fix F-bases

Ã1 = spanF {x, y, z, u, v, ξ} , and Ã2 = spanF
{
u2, uv, v2, yv, yu,−xξ

}
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and let ` ∈ Ã1 be a general linear form

` = ax+ by + cz + du+ ev + fξ.

Then the matrix for the Lefschetz map ×` : Ã1 → Ã2 and its determinant are given by

M =


0 0 0 d 0 −f
0 0 0 e d 0
0 0 0 0 e 0
d e 0 a b 0
0 d e b c 0
−f 0 0 0 0 −(a+ λf)

⇒ det(M) = f 2e4.

Thus ` is a strong Lefschetz element for Ã if and only if e · f 6= 0. In particular Ã
satisfies SLP and also WLP.

Surprisingly, the analogous result to Theorem 7.16 does not hold for the weak Lefschetz
property. We now give an example illustrating that blowing up does not preserve WLP.

Exercise 7.18. Consider the following algebra

A =
F[x, y, z, u, v]

Ann(XU6 + Y U4V 2 + ZU5V )

=
F[x, y, z, u, v]

(yz, xz, xy, vy − uz, vx, ux− vz, u5y, u5v2, u6v, u7, v3, x2, y2, z2)

and its quotient corresponding to the Thom class τ = u3

T =
F[x, y, z, u, v]

Ann(XU3 + Y UV 2 + ZU2V )

=
F[x, y, z, u, v]

(z2, yz, xz, y2, xy, vy − uz, x2, vx, ux− vz, u2y, v3, u2v2, u3v, u4)

Consider also the cohomological blowup

Ã =
F[x, y, z, u, v, ξ]

I + ξ ·K + (ξ3 − u3)
.

(a) Compute the Hilbert functions of A and T respectively.
(b) Show that both A and T satisfy WLP, but not SLP.
(c) Show that the BUG Ã does not satisfy WLP.

In Exercise 7.18 the Thom class of the map A→ T has degree 3. This is the minimal
possible value for such an example based on the following result.

Remark 7.19. Let F be an infinite field and let π : A→ T be a surjective homomorphism
of graded AG F-algebras such that the difference between the socle degrees of A and
T is at most 2 and A and T both satisfy WLP. Then every cohomological blow-up
algebra of A along π satisfies WLP.
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Appendix A. Exercise session 1: Computations in Macaulay2

Use Macaulay2 to solve the exercises in this section!

Exercise A.1. Determine whether the algebra

Q[x, y, z]

(x2 + y2 + z2, xyz, z4 − 3xz3)

is artinian.

Exercise A.2. Compute the Hilbert series of the algebra

A =
Z/3Z[x, y, z]

(x10, y10, z10, x3y3z3)
.

Is x+ y + z a weak Lefschetz element of A?

Exercise A.3. Let R = Q[x1, x2, x3, x4] and m = (x1, x2, x3, x4). Does the algebra
R/(m5 + x1m

2 + (x3
2)) have WLP?

Exercise A.4. Build a function in Macaulay2 that takes as input an artinian standard
graded algebra A and an element ` ∈ A1 and returns true of false given by whether
` is a weak Lefschetz element of A.

Hint: use the result of Exercise 4.3 (also stated as Exercise B.2 below).

Exercise A.5. Use your function from Exercise A.4 to explore the WLP of the algebra

Z/pZ[x1, . . . , xn]

(xn1 , . . . , x
n
n, x1 · · ·xn−1(x1 + xn))

for some integer n ≥ 3, and some prime number p. For which n and p can you detect
WLP?

Results related to Exercise A.2 and Exercise A.5 can be found in [19].

Appendix B. Exercise session 2: Lefschetz Properties

A (∗) denotes that at least some portion of the exercise is an open (research) question.

Exercise B.1. The rings A = F[x1, . . . , xn]/(xd11 , . . . , x
dn
n ), where d1, . . . , dn ≥ 1 are

integers, are called monomial complete intersections.

(1) Prove that monomial complete intersections are the only complete intersection
rings of the form F[x1, . . . , xn]/I where I is an ideal generated by monomials.

(2) Prove that monomial complete intersections are the only artinian Gorenstein
rings of the form F[x1, . . . , xn]/I where I is an ideal generated by monomials.

Exercise B.2 (Equivalent WLP statements). Prove that for an artinian graded F-
algebra A the following are equivalent:

(1) L ∈ A1 is a weak Lefschetz element for A.
(2) For all 0 ≤ i ≤ c− 1 the map ×L : Ai → Ai+1 has rank min{hA(i), hA(i+ 1)}.
(3) For all 0 ≤ i ≤ c− 1 dimF([(L)]i+1) = min{hA(i), hA(i+ 1)}.
(4) For all 0 ≤ i ≤ c− 1 dimF([A/(L)]i+1) = max{0, hA(i+ 1)− hA(i)}.
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(5) For all 0 ≤ i ≤ c− 1 dimF([0 :A L]i) = max{0, hA(i)− hA(i+ 1)}.

Exercise B.3. Let F be a field of characteristic zero and let

A =
F[x, y, z]

(x3, y3, z3, (x+ y + z)3)
.

(1) Find the Hilbert function of A.
(2) Prove that A satisfies WLP but not SLP .

Exercise B.4. (∗) With help from a computer make conjectures regarding the WLP
and SLP for monomial complete intersections in positive characteristics. A character-
ization is known for SLP, but not for WLP. See [4, 20] for related work.

Exercise B.5. Let F[x, y]d be the vector space of polynomials of degree d in F[x, y].
Prove:

(1) E = x ∂
∂y
, H = x ∂

∂x
− y ∂

∂y
, F = y ∂

∂x
form an sl2-triple.

(2) Prove that the monomial xayb is an eigenvector of H with eigenvalue a− b ∈ Z.
In particular the eigenvalues ofH on F[x, y]d are d, d−2, d−4, . . . , 4−d, 2−d,−d.

(3) Prove that a basis of F[x, y]d is yd, E(yd), E2(yd), . . . , Ed(yd).
(4) Find a basis that satisfies the properties given by Theorem 5.10.

Pictorially this can be summarized as

0 Fyd Fxyd−1 · · · Fxd−1y Fxd 0

E E E E

E

F

F F F F

Exercise B.6. (1) Suppose that V is a representation of sl2 and that the eigenval-
ues of H on V are 2, 1, 1, 0,−1,−1,−2. Show that the irreducible decomposition
of V is V ∼= F[x, y]2 ⊕ F[x, y]1 ⊕ F[x, y]1.

(2) Prove that if V is any representation of sl2 then its irreducible decomposition
is determined by the eigenvalues of H.

Exercise B.7. Let V be an sl2 representation and set Wk = {v ∈ V | H(v) = kv}.
(1) Show that dimFWk = dimFW−k.
(2) Prove that Ek : W−k → Wk is an isomorphism.
(3) Show that dimFWk+2 ≤ dimFWk for all k ≥ 0, that is, the two sequences

. . . , dimFW4, dimFW2, dimFW0, dimFW−2, dimFW−4, . . .

. . . , dimFW3, dimFW1, dimFW−1, dimFW−3, . . .

are unimodal.

Appendix C. Exercise session 3: Gorenstein rings

A (∗) denotes that at least some portion of the exercise is an open (research) question.

Exercise C.1. Generalize Example 6.14 to find the inverse system of the ideal defining
a point in projective n-space and the inverse systems of all of the powers of this ideal.
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Exercise C.2. For any homogeneous polynomial F ∈ R∗ of degree d, prove

AnnR(F )⊥ := {g ∈ R∗ | f • g = 0, ∀f ∈ AnnR(F )}
is equal to R • F . This is an instance of Macaulay’s double annihilator theorem.

Hint: start by showing the equality is true in degree d, then use the R-module structure.

Exercise C.3 (R. Gondim [9]). Let x1, . . . , xn and u1, . . . , um be two sets of indeter-
minates with n ≥ m ≥ 2. Let fi ∈ F[x1, . . . , xn]k and gi ∈ F[u1, . . . , um]e for 1 ≤ i ≤ s
be linearly independent forms with 1 ≤ k < e. If s >

(
m−1+k

k

)
, then

F = f1g1 + · · ·+ fsgs

is called a Perazzo form and A = F[x1, . . . , xn, u1, . . . , um] is called a Perazzo algebra.

(1) Show that hessk(F ) = 0 and so A does not have SLP.
(2) Make conjectures regarding the Hilbert functions of Perazzo algebras.
(3) Make conjectures regarding the WLP for Perazzo algebras.

(4*) Do there exist two Perazzo algebras A and B having the same Hilbert function
so that A has WLP and B does not?

Some answers to (2) and (3) can be found in [1].

Exercise C.4. Show that every orientation on an AG algebra A can be written as the
function

∫
A

: A→ K defined by
∫
A
g = (g ◦F )(0) for some Macaulay dual generator F

of A, where (g◦F )(0) refers to evaluating the element g◦F of R′ at X1 = · · · = Xn = 0.

Exercise C.5. Show that there exists a surjective homomorphism π : A → T of
AG algebras having dual generators F,H of degrees d ≥ k if and only if there exists
τ ∈ Ad−k such that τ ◦ F = H. Hint: You may use the Thom class in Definition 7.2.

Exercise C.6. Consider the following algebra

A =
F[x, y, z, u, v]

Ann(XU6 + Y U4V 2 + ZU5V )

=
F[x, y, z, u, v]

(yz, xz, xy, vy − uz, vx, ux− vz, u5y, u5v2, u6v, u7, v3, x2, y2, z2)

and its quotient corresponding to the Thom class τ = u3

T =
F[x, y, z, u, v]

Ann(XU3 + Y UV 2 + ZU2V )

=
F[x, y, z, u, v]

(z2, yz, xz, y2, xy, vy − uz, x2, vx, ux− vz, u2y, v3, u2v2, u3v, u4)

Let K be the kernel of the canonical surjection π : A→ T . Consider the cohomological
blow up

Ã =
F[x, y, z, u, v, ξ]

I + ξ ·K + (ξ3 − u3)
.

(a) Compute the Hilbert functions of A and T respectively. Feel free to use Macaulay2.
(b) Show that both A and T satisfy WLP, but not SLP. You may use Macaulay2.
(c) Show that the BUG Ã does not satisfy WLP.
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